NAG Toolbox for MATLAB

f08hq

1 Purpose

f08hq computes all the eigenvalues and, optionally, all the eigenvectors of a complex Hermitian band matrix. If the eigenvectors are requested, then it uses a divide-and-conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the QL or QR algorithm.

2 Syntax

[ab, w, z, info] =
$$f08hq(job, uplo, kd, ab, 'n', n)$$

3 Description

f08hq computes all the eigenvalues and, optionally, all the eigenvectors of a complex Hermitian band matrix A. In other words, it can compute the spectral factorization of A as

$$A = Z\Lambda Z^{\mathrm{H}}$$
.

where Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λ_i , and Z is the (complex) unitary matrix whose columns are the eigenvectors z_i . Thus

$$Az_i = \lambda_i z_i, \qquad i = 1, 2, \dots, n.$$

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D 1999 *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia URL: http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: **job – string**

Indicates whether eigenvectors are computed.

$$job = 'N'$$

Only eigenvalues are computed.

$$job = 'V'$$

Eigenvalues and eigenvectors are computed.

Constraint: job = 'N' or 'V'.

2: **uplo – string**

Indicates whether the upper or lower triangular part of A is stored.

[NP3663/21] f08hq.1

f08hq NAG Toolbox Manual

```
uplo = 'U'
```

The upper triangular part of A is stored.

uplo = 'L'

The lower triangular part of A is stored.

Constraint: uplo = 'U' or 'L'.

3: kd - int32 scalar

If **uplo** = 'U', the number of superdiagonals, k_d , of the matrix A.

If **uplo** = 'L', the number of subdiagonals, k_d , of the matrix A.

Constraint: $kd \ge 0$.

4: ab(ldab,*) - complex array

The first dimension of the array **ab** must be at least $\mathbf{kd} + 1$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The upper or lower triangle of the n by n Hermitian band matrix A.

The matrix is stored in rows 1 to $k_d + 1$, more precisely,

if **uplo** = 'U', the elements of the upper triangle of A within the band must be stored with element A_{ij} in $\mathbf{ab}(k_d+1+i-j,j)$ for $\max(1j-k_d) \le i \le j$;

if **uplo** = 'L', the elements of the lower triangle of A within the band must be stored with element A_{ij} in $\mathbf{ab}(1+i-j,j)$ for $j \le i \le \min(nj+k_d)$.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The first dimension of the array **ab** and the second dimension of the array **ab**. (An error is raised if these dimensions are not equal.)

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

ldab, ldz, work, lwork, rwork, lrwork, iwork, liwork

5.4 Output Parameters

1: ab(ldab,*) - complex array

The first dimension of the array **ab** must be at least kd + 1

The second dimension of the array must be at least $max(1, \mathbf{n})$

ab contains values generated during the reduction to tridiagonal form.

The first superdiagonal and the diagonal of the tridiagonal matrix T are returned in **ab** using the same storage format as described above.

2: $\mathbf{w}(*)$ - double array

Note: the dimension of the array w must be at least max(1, n).

The eigenvalues of the matrix A in ascending order.

f08hq.2 [NP3663/21]

3: z(ldz,*) – complex array

The first dimension, Idz, of the array z must satisfy

if
$$job = 'V'$$
, $ldz \ge max(1, n)$; if $job = 'N'$, $ldz \ge 1$.

The second dimension of the array must be at least $max(1, \mathbf{n})$ if $\mathbf{job} = 'V'$ and at least 1 if $\mathbf{job} = 'N'$

If $\mathbf{job} = 'V'$, \mathbf{z} contains the unitary matrix Z which contains the eigenvectors of A. The ith column of Z contains the eigenvector which corresponds to the eigenvalue $\mathbf{w}(i)$.

If job = 'N', z is not referenced.

4: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

$$info = -i$$

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: job, 2: uplo, 3: n, 4: kd, 5: ab, 6: ldab, 7: w, 8: z, 9: ldz, 10: work, 11: lwork, 12: rwork, 13: lrwork, 14: iwork, 15: liwork, 16: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info > 0

if **info** = i and **job** = 'N', the algorithm failed to converge; i elements of an intermediate tridiagonal form did not converge to zero; if **info** = i and **job** = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and column $i/(\mathbf{n}+1)$ through $\text{mod}(i,\mathbf{n}+1)$.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix (A + E), where

$$||E||_2 = O(\epsilon)||A||_2$$

and ϵ is the *machine precision*. See Section 4.7 of Anderson *et al.* 1999 for further details.

8 Further Comments

The real analogue of this function is f08hc.

9 Example

[NP3663/21] f08hq.3

f08hq NAG Toolbox Manual

```
[abOut, w, z, info] = f08hq(job, uplo, kd, ab)
abOut =
 Columns 1 through 4
                       7.8051
                                        -0.0720
  1.0000
                5.2000
  3.8730 8.5456 6.2114 1.9595
3.0000 + 1.0000i 7.2377 + 3.8317i 5.4275 + 0.2013i 0
 Column 5
  1.0669
     0
      0
w =
  -6.4185
  -1.4094
   1.4421
  4.4856
  16.9002
z =
 Columns 1 through 4
 0.2591
               -0.6367
                               0.4516
                                             -0.5503
  0.2759i
 -0.5159 + 0.1095i
                  0.0465i
 -0.0004 + 0.5093i   -0.3450 + 0.0832i   -0.4088 - 0.3213i
                                                  0.1707 -
0.0200i
  0.4333 - 0.1353i 0.2469 - 0.2634i 0.0204 + 0.2262i -0.0175 +
0.5611i
 Column 5
  0.1439
  0.3060 + 0.0411i
  0.4681 + 0.2306i
  0.4098 + 0.3832i
 0.1819 + 0.5136i
info =
        0
```

f08hq.4 (last) [NP3663/21]